

Extreme Ultra-low Noise, Ultra-low Noise, Low Noise Diesel Generators

Diesel Generator

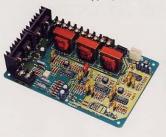
Heavy emphasis on the environment,
High performance,
High quality, Safety

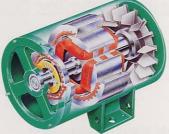
Software and Hardware Technology

INIPPON SHARYO, LTD.

Conceptualizing all that is excellent to people, to the environment,

NIPPON SHARYO, LTD. is continuously pursuing safety & environment more on the basis of over 40 years experience.


Finally, We can provide the new models herein.


1

Performance

High Quality Generator Output

Using a separately excited FET type AVR (Automatic Voltage Regulator), this unit delivers high quality electricity with a voltage fluctuation of within \pm 0.5%. The inverter with strong damper windings, rectifier and other features make it possible to use this generator with special loads. (The 13EI2 and 25EI2 are the self excited type.)

Antirust

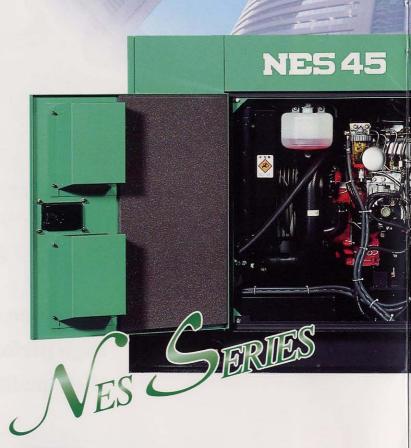
Employing The ED coating & Acrylic coating are effective for antirust & offshore work. (NES45EH-NES610SM)

2

Environment

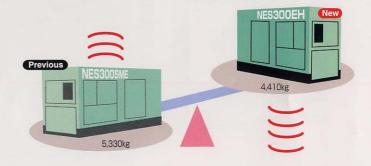
Emission Control

New NES series are designed to pass the second emission control regulated By the Japanese land infrastructure & transportation ministry. (Without the NES610SM & NES800SM.)


Sound Level

Special designed housing structure enables to make Low noise & Ultra-low noise condition.

It was admitted as Ultralow noise & Low noise by the Japanese land infrastructure & Transportation ministry.



3 Running Cost.

Compact & Light weight design.

New NES series are designed to be more compact & right weight.

Fuel consumption

By employing the low fuel consumption engine, running cost become cheap.

to machines, and to society

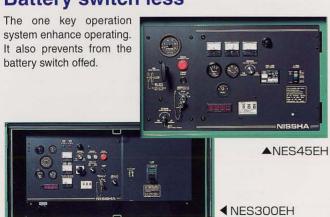
Generator

Antitheft & Safety

The monitor are equipped as standard on all models. The sensor provided for stopping the engine for safety. The antitheft clad protects against theft (NES45EH-NES90El standard.)

Dual Voltage

NES 150EH ~ NE800SM are designed to be Dual voltage.



▲NES150EH

Automatic Air Bleeder

4 Easy Operation

Battery switch less

Easy maintenance

One side maintenance disign enable to make easy maintenance.

Fuel Switching Valve

The three-way valve (patent pending) is equipped inside of the housing.

(NES13EI2-NES300EH standard. NES45EH, 60EH & 90EI are two handle type.)

Large Terminal Block

Large square terminals and high capacity single phase terminals are provided, enabling secure cable connections.

▲NES150EH

Switching Between Single Phase and Three Phase

A switch is provided to enable easy switching between supply of single phase and three phase power. (13EI2, 25EI2)

Ultra-Low Noise Models

■Sp	ecifi	cations by M	lodel						013		out	,10		
	THE T	Item	Mode Units	NES 1	3EI2	NES	25EI2	NES4	15EH	NES60EH		NES	90EI	
	F	Frequency	Hz	50	60	50	60	50	60	50	60	50	60	
		Output	kVA	3-phase 10.5 Single phase 3-wire, 6.1	3-phase 13 Single phase 3-wire, 7.5	3-phase 20 Single phase 3-wire, 11.5	3-phase 25 Single phase 3-wire, 14.4	37	45	50	60	75	90	
		Output	kW	3-phase 8.4 Single phase 3-wire, 6.1	3-phase 10.4 Single phase 3-wire, 7.5	3-phase 16 Single phase 3-wire, 11.5	3-phase 20 Single phase 3-wire, 14.4	29.6	36	40	48	60	72	
		Voltage	V	3-phase 200 Single phase 3-wire, 100-200	3-phase 220 Single phase 3-wire, 110-220	3-phase 200 Single phase 3-wire, 100-200	3-phase 220 Single phase 3-wire, 110-220	200	220	200	220	200	220	
or		Current	А	30.3	34.1	57.7	65.6	107	118	144	157	217	236	
Generator		Terminals												
hen	Pow	ver Factor (*1))			80% L	agging							
0	Power Factor (*1) Type							ushless A	C Altern	ator				
	Single-Phase Output	Voltage	V	100	110	100	110	100	110	100	110	100	110	
	le-Ph Outpu	Current	А	_	-	60×1	Circuits	60×2	Circuits	75×20	Circuits	100×2	Circuits	
	Sing	Outlets		15/	A×2	154	4×2	154	4×2	15A	×2	15/	4×2	
	E	ngine Name		Isuzu	3LD1	Isuzu A	A-4LE1	Hino V	V04D-K	Hino W	04D-TG	Isuzu DI	D-6BG1T	
		Туре		S	wirl Cha	mber Typ	ре			Direct Inje	ection Ty	ре		
	Cylind	ders Bore × Stroke	mm	3-83.	1×92	4-85	5×96	4-104	×118	4-104	×118	6-110)×130	
	Tota	l Displacement	l	1.4	196	2.1	79	4.0	009	4.0	09	6.4	194	

	Engine	e Name		Isuzu	3LD1	Isuzu A	A-4LE1	Hino W	/04D-K	Hino W)4D-1G	Isuzu DL)-6BG11	
	Ty	/ре		S	wirl Cha	mber Typ	е		D	irect Inje	ction Typ	ре		
	Cylinders E	3ore×Stroke	mm	3-83.	1×92	4-85	×96	4-104	×118	4-104	×118	6-110)×130	
	Total Displac	placement	l	1.4	96	2.1	79	4.0	09	4.0	09	6.4	194	
	Potod	Output	kW	12.2	14.5	19.1	23.5	34.9	41.9	50.4	59.6	73.6	91.2	
	nateu	Output	PS	16.6	19.7	26	32	47.5	57	68.5	81	100	124	
Engine	Sp	peed	min-1	1500	1800	1500	1800	1500	1800	1500	1800	1500	1800	
ш	Fuel Con-	50% Load	ℓ/H	1.8	2.2	2.9	3.6	4.6	5.7	6.2	7.7	9.6	12	
	The state of the s	75% Load	ℓ/H	2.3	2.8	3.9	5.0	6.3	7.8	8.6	10.5	13	17	
	Engine (Oil Volume	l	-	7	8	3	16	6.5	16	6.5	2	0	
	Ва	ttery		80D26R(NX110-5)	80D26R(NX110-5)	55B24L(N	JX100-S6)	55B24L(N	IX100-S6)	95D31R(NX120-7)	
	Fuel Tan	k Capacity	l	6	2	6	5	10	00	12	25	20	00	
	F	uel								Diese	l Fuel			
Ħ	He	eight	mm	9	50	9	50	1.1	90	1,1	90	1.2	290	
Weight		th (*2)	mm		50	- 100	50	1,9		2,2		25,160	'30	

ght	Height	mm	950	950	1,190	1,190	1,290	
Weight	Length (*2)	mm	1,450	1,550	1,995	2,245	2,730	
Dimensions,	Width	mm	700	700	880	880	1,050	
ensi	Dry Weight	kg	530	580	1,150	1,200	1,650	
Dim	Mass in Working Order	kg	590	650	1,260	1,335	1,850	
Sou	ind Power Level (*3)	dB	86	89	90	92	91	
Noise Re	eference Value (Previous Calculation)	dB	60	63	62	63	63	
100000000000000000000000000000000000000	N 2 101 (FEEDER) E E			1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		100	Y Wash	

^(*1) Power factor 100% when single-phase 3-wire is used (*2) Values in () are dimensions when the rain cover is removed. (*3) 60 Hz/No load, New standard formula (LwA)

^{1.} The NES13~NES90 are fixed frequency type generators. They are preset at the 12. Either 3-phase 3-wire or 3-phase 4-wire can be used. 3. A single phase load of

					世間	LO	W	Nois	se						
equipped wit	del column wit th engines that the Ministry o	comply with S	Stage 2 Exhaus	odels which st Emissions nsport.			ode		*(a		th engines tha	t comply with	show m Stage 2 Exhaus ructure and Tra		
	NES 1	50EH	NES2	20EM	NES3	00EH	NES4	-00EM	NES5	OOEM	NES6	10SM	NES8	M200	
	50	60	50	60	50	60	50	60	50	60	50	60	50	60	
	125	150	195	220	270	300	350	400	450	500	554	610	700	800	
	100	120	156	176	216	240	280	320	360	400	443	488	560	640	
	200/400	220/440	200/400	220/440	200/400	220/440	200/400	220/440	200/400	220/440	200/400	220/440	200/400	220/440	
	361/180	394/197	563/281	577/289	779/390	787/394	1010/505	1050/525	1299/650	1312/656	1599/800	1600/800	2021/1010	2100/1050	
					4										
					80% Lagging										
								Bru	shless A	C Altern	ator				
100 110		100	110	100	110	100	110	100	110	100	110	100	110		
	100×2 Circuits					_		_					·-		
	15A×2 15A×2			A×2	15	A×2	15	A×2	15	A×2	15	A×2	15A×2		
	Hino J08C-UD Mitsubishi 6D24-TLE2B		ibishi TLE2B	Hino K	13C-TY	Mits S6B3-E	ubishi 2PTAA-3	Mitsu S6A3-E2	bishi 2PTAA-1	Mitsu S6R			ubishi 2-PTA		
	Direct inje	ection type	with turb	o charger			Direct inj	ection typ	pe with to	urbo chai	rger & af	ter coole	er		
	6-127	′×130	6-137×150		6-135	×150	6-135	×170	6-150	×175	6-170	×180	12-150	0×160	
	7.9	61	11.94		12.9		14	.6	18	.56	24	1.5	33	3.9	
	118	140	181	199	242	269	309	346	405	467	517	565	676	757	
	160	190	246	271	329	366	420	471	551	635	703	768	920	1030	
	1500	1800	1500	1800	1500	1800	1500	1800	1500	1800	1500	1800	1500	1800	
	14	17	22	26	29	36	40	49	51	62	60	72	82	105	
	20	24	30	36	42	52	56	69	73	87	84	99	113	141	
	24	10)0.0-1		7		.7		0	100	0	,700	2	130 (Subtank-85)		
	95D31R(JT200-12)	- 0	- 10	- 30	NT250-15)				NT250-15×2)	180G51×4(N	- N	
	25	50	37	70	49	90	49	90		90	58	30	730		
									Diese	el Fuel					
	1,450 1,750			'50	1,7	90	2,0	90	2,2	280	2,4	100	2,5	580	
	3,1	80	3,8	340	3,9	80	4,5	50	5,270	(4,780)	5,173	(4,690)	6,235	(5,600)	
	1,1	30	1,2	90	1,4	15	1,4	15	1,650		1,650		1,950		
	2,2	270	3,5	30	3,9	40	5,5	10	6,810		8,190		11,000		
	2,5		3,9	10	4,4		6,0		7,400		8,860		12,000		
		95		95		99	1	01		98	101		101		

Extreme Ultra-low Noise Diesel Generators

Fin in with Silent Area

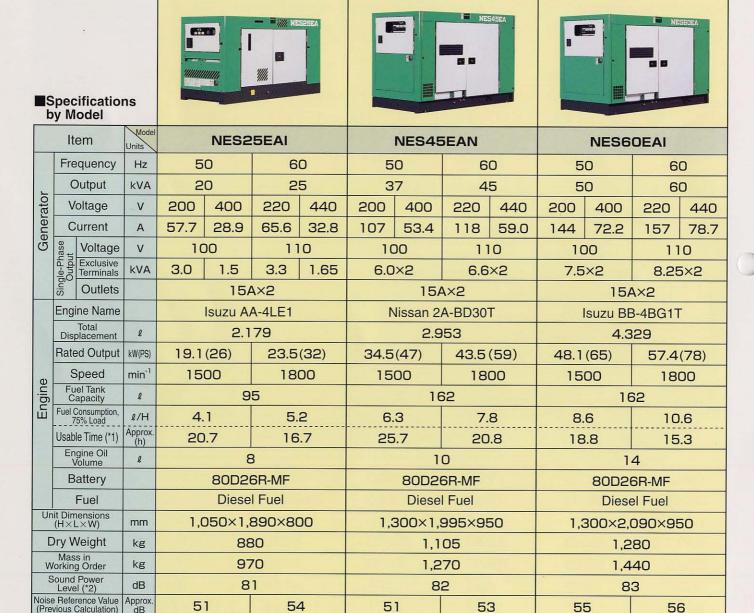
(Environment Advance Series)

Equipped with Stage2 Exhaust EmissionsStandards CompliantEngines

At times and in places where people notice operating noise

Used libit

Used as a power supply for hospitals, schools, libraries and events, or at all-night construction sites that are close to residential areas.


Dual Voltage Specifications Operation Panel and Output Terminal Block

ANES25EAL

A large fuel tank enables extended operation.

A 3-way cock that enables simple switching to an external fuel tank is standard equipment. This gives peace of mind concerning continuous operation.

^(*1) Usable time shows in cases where there is a 75% load.

^{(*2) 60} Hz/No load, New standard formula (LwA)

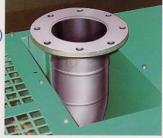
Automatic synchronous operation equipment (Synchro-Auto)

(NES220 · 400 or higher)

- This unit is microcomputer controlled, so it is extremely compact. It can be mounted inside the generator housing. It enables automatic synchronous start and load distribution, and is easy to operate.
- Troublesome signal lines between generators are not needed.
- It monitors synchronization congestion and reverse power flow and enables safe synchronous operation.
- It is also strong against harsh environmental conditions and can withstand outdoor temperatures ranging from -10°C ~ +45°C.

Percent Power Meter
(NES220 and higher models)

This meter displays power distribution of each generator during synchronous operation in percent units, enabling the operator to check the power balance with a single glance. It is also equipped with a reverse power flow protective device, and can be used even in cases of manual synchronous operation.


Automatic Starter

This device is compact and can be mounted internally inside the generator housing in the NES150 and higher models. It can start and stop the generator using external signals.

Muffler outlet flange mounting (NES45 or higher models)

This flange is used if the generator is installed indoors or when modifying the exhaust system.

3 Salt Damage Countermeasures

The following salt damage countermeasures are available to guard the generator from corrosion and insulation breakdown from salt damage due to seashore and marine construction and similar harsh conditions of use.

- Special molded type generator.
- Air intake cover that prevents penetration by rain water.
- A corrosion resistant silicone resin overcoat on terminals in the control panel.

Cover with Anti-theft lock (NES13, 25, 150, 220)

The external view of our generators, which in the past were found to be easy to steal, has undergone an extensive review, with modifications to prevent theft including a special cover on the suspension hooks. These covers are of course fitted with locks.

List of Options

O marks under the model name indicate that the option is applicable to that model

Option Item Model	13EI2	25EI2	25EAI	45EH	45EAN	60EH	60EAI	90EI	150EH	220EM	300EH	400EM	500EM	610SM	800SM
3-phase/Single phase Switching	Standard	Standard	-	0	0	0	0	0			_		_	_	-
Multiple voltages	0	0	Standard	0	Standard	0	Standard	0	Standard						
Simultaneous 200/400V use	-	-	-		_	-			10	0	0	0	0	0	0
Automatic Starter	0	0		0		0		0	0	0	0	0	0	0	0
Battery charger		0		0		0		0	0	0	0	0	0	0	0
Synchro-Auto	-	_	-	_		-	-			0		0	0	0	0
% Power Meter	2	-	=	-	E 7		.—:		:	0	0	0	0	0	0
Slowdown Deice	0	0	_	_	-	_	-	: <u> </u>	0	0	0	0	0	0	0
Salt Damage Countermeasures	0	0		0		0		0	0	0	0	0	0	0	0
Muffler Flange				0		0		0	0	0	0	0	0	0	0
Anti-theft Clad	0	0	0	Standard	0	Standard	0	Standard	0	0	-	-	-	-	_
Panel Door with key				0		0		0	0	0	0	0	0	0	0
Fuel Filler Inlet with Key	0	0		0		0		0	0	0	0	0	0	0	0
Auto Fuel Filler	0	0		0		0		0	0	0	0	0	0	0	0
Three-way Cock	Standard	Standard	Standard	Standard	0	0	0	0							
Auto Oil Filler	0	0	-		_	-	_	_		0	0	0	0	0	Standard
Skids	Standard	Standard	Standard	0	Standard	0	Standard	0	0	0	0	0	0	0	0
Trailer Specifications				0		0		0	0	0	0	0	-	_	*

Deciding Generator Output

In the case of Motors

If the load is to be 3-phase squirrel cage induction motors (hereafter, motors), use the following as a guide to selecting the required generator output.

Motor Use Examples

(These examples of use apply to the use conditions shown at right.

Requirements differ depending on conditions, so please contact our sales representatives directly for details.)

For 50 Hz Areas

		Model	NES 13	NES 25	NES 45	NES 60	NES 90		NES 220				NES 610	
acity		kVA	10.5	20	37	50	75	125	195	270	350	450	554	700
Capacity		kW	8.4	16	29.6	40	60	100	156	216	280	360	443	560
(kW)	Start	Direct Start	3.2	6.1	11.3	15.3	23.0	38.3	59.7	76.5	107	138	168	214
otors	Simultaneous	Star-Delta starting (A)	4.8	9.2	17.0	23.0	34.4	57.4	89.5	115	161	207	253	321
Capacity of Usable Motors (kW)		Star-Delta starting ®												
f Usa	Start	Direct Start	7.9	15.1	28.0	07.0	56.7	94.4	147	100	264	340	416	529
city o	Successive	Star-Delta starting (A)	7.9	15.1	20.0	37.8	30.7	94.4	1 147	189	204	340	410	529
Capa	Succe	Star-Delta starting ®												

Caution

- The voltage blowout on startup of the mother does not exceed 30%.
- 2. The starting kVA of the motor is 7 kVA per kW.
- 3. The steady state load figures are as follows.
- (1) Load factor 90%.
- (2) Efficiency is 85%.4. Even if the motors are switched on sequence, The total output of the motors what are switched on Simultaneously at first does not exceed left table ③.
- 5. Star-Delta starting ⓐ: Open 人─△ method. Star-Delta starting ⑧: Close 人─△ method.
- These numbers on the table is rough standared.

 Please contact our staff when you need to consult for more detail.
- The load that input to the engine is Depended on the effective pressure.

For 60 Hz Areas

	-	Model	NES 13	NES 25	NES 45	NES 60	NES 90	NES 150	NES 220	NES 300	ACCOMPANIES.	Astronomical Control	NES 610	H Poblacon Committee
acity		kVA	13	25	45	60	90	150	220	300	400	500	610	800
Capacity		kW	10.4	20	36	48	72	120	176	240	320	400	488	640
(kW)	Start	Direct Start	4.0	7.7	13.8	18.4	27.6	45.9	67.3	91.8	122	153	184	245
otors	Simultaneous	Star-Delta starting (A)	6.0	11.5	20.7	27.6	41.3	68.9	101	138	184	230	276	367
Capacity of Usable Motors (kW)	Simult	Star-Delta starting ®							3 166	227	302	070		
f Usa	Start	Direct Start	0.0	100	040									004
city o	Successive	Star-Delta starting (A)	9.8	18.8	34.0	45.3	68.0	113				378	453	604
Capa	Succe	Star-Delta starting ®												

Motor Selection Examples

Example: NES150 (125kVA 50Hz) adoption.

- 1. In case of simultaneously switching.
 - Across the line starting method.
 Regardless of plural motoes or single motor, Total output
 of the motor(s) should be within 38.3kW.
- Star-Delta starting method.
 Total output of the motor(s) should be within 94.9kW.
- In case of sequent switching.
 Total output of the motor(s) should be within 94.4kW.
 But Maximum output of the motor(s) which is switched at same time

Should be within 38.3kW.

Example: Rated current caculation:

$$I^{(A)} = \frac{kVA}{\sqrt{3} \cdot V} \times 1000$$

- The specifications in this catalog are subject to change without notice.
- Before using Nippon Sharyo generators, please be sure to read the operation manual thoroughly and observe all the cautions included therein.
- OUsers are expressly warned not to attempt to modify the generator in any way. Nippon Sharyo shall not be liable for any damages or other results if such modifications are attempted.

Manufacturing, Sales

NIPPON SHARYO, LTD.

URL http://www.n-sharyo.co.jp/

80 Ryucho, Narumi-cho, Midori-ku, Nagoya 458-8502, Japan Tel 81-52-623-3529 Fax 81-52-623-4349 E-mail: KIDEN-KAIGAI@cm.n-sharyo.co.jp

■Sales Representative