

NES SERIES Diesel Engine Generator

m

00

NES SERIES

Powerful and Earth-Friendly Generator

As a manufacturer of foundation construction equipment, Nippon Sharyo delivers leading-edge portable generators designed considering environmental issues such as global warming, air pollution and noise, with many years of construction experience.

Paving the way to the future

The history and progress of diesel generator sets cannot be told without Nippon Sharyo, Ltd. We have defined the times by launching various power production facilities with new innovative concepts. We continue to contribute to the environment and ergonomics through improving our products.

Super low noise level

Low noise design for environment-friendliness. The product line up NES25 – NES220 meets super low noise level.

Compact and light-weight

The body is small and light-weight, enabling easy transportation by truck and reducing transportation costs.

Please consult Nippon Sharyo about selection beforehand.

We will make suggestions according to your usage environment and load.

Oil guard as a standard

An oil guard is equipped as standard on all models that conform to the Third Emission Regulation. This reduces ground contamination from oil leakage.

Reduced fuel consumption

Fuel consumption can be reduced by using an optional e-Pon, energy saving remote control and slowdown device.

Note : For details, refer to the options table on pages 15 and 16.

PRODUCT INFORMATION

High performance and High quality

New

Three-phase/single-phase three-wire simultaneous output function (switching not required)

The NES25 is provided with a three-phase/single phase three-wire independent terminal that enables simultaneous use.

Dual voltage

All models (except for the NES100EI) are equipped with a dual voltage feature to select either 200V for general use and 400V for large-capacity equipment. The dual voltage

▲ Voltage indicator

feature meets the need for globalization since 400V loads are more common overseas. The voltage currently selected is shown by the voltage indicator.

Methods

High-quality power supply

The FET-type AVR (Automatic Voltage Regulator) and high-performance damper winding provide highquality power with a voltage regulation of $\pm 0.5\%$. In addition to working well with general linear loads, the generator also works well with non-linear loads such as inverters.

High insulation

The alternator winding is coated with varnish using dripping impregnation and vacuum impregnation to provide high insulation performance.

Weather resistant coating

Electrodeposition and weather-resistant baking finish are used on all models, providing high resistance to corrosion.

Fuel air bleeding

When the start/stop switch is in the ON position, a fuel pumps operates to execute air bleeding, which is very useful when changing fuel filters (standard equipment on NES25TK - NES400TI and NES100EI).

Tough and durable

NISSHA generators are known for toughness and durability. We continue to create products that satisfy our customers.

Note: Some of the above features are not included in some models.

PRODUCT INFORMATION

Useful and safe equipment and structure

Oil guard

NES25TK - NES400TI are equipped with an oil guard that has passed leak test to protect the environment. In addition to offering rain protection, a drain cock is also provided to drain rainwater that has entered the oil guard.

Leak test

Note: Rainwater collected in the oil guard needs to be drained.

Large tank

NES25TKL, NES45TYL, and NES60TKL models are equipped with a large capacity fuel tank. This makes it possible to support more than 48 hours of long term continuous operation on one tank without using an external tank (with a 50% load at 50Hz for each model).

Also, because an external tank is not used, it conforms to "electrical generator facilities that are not continuously monitored" of the electrical installation technical standards.

Note: "Continuous monitoring" means a state under which a technician is continuously present at the location, site, etc. where the generator is installed, and can supervise its operation.

Earth leakage protector

To prevent electric shocks, a highsensitivity, high-speed earth leakage relay is provided (detection in 0.1 seconds at 30mA). Also, leakage detection can be changed to 200mA as an option, which is effective in protection coordination with the leakage breaker on the load system side.

Daily check on one side

The fuel filler port, oil filler/inspection port, reserve tank and output terminal board are placed on one side, allowing easy access for daily checking and wiring (excluding the NES25).

Easy oil change

Oil can be changed quickly and easily without special tools. Maintenance time is saved and your hands keep clean (applies to NES25, NES45TY2, and NES60).

Oil drain hose

Easy radiator flushing

The front cover of the radiator is either a full-open type (NES25 to NES60) or hinged type (NES100 to NES800) to enable easy flushing of the radiator.

Fuel tank three-way cock

A single-lever, fuel tank

changeover cock for switching between the internal and external tanks is provided to allow for long time operation. The cock is easy to operate and prevents mistakes switching. (Provided on NES25 to

NES220, except NES25TKL, NES45TYL and NES60TKL.)

Three-way cock of fuel tank

New IC monitor

New IC monitor checks the system for malfunction at all times before and during operation.

Note: Except machines equipped with second exhaust emission compliant engines and NES800SM.

Example: Control panel of NES100TI

ltem	Engine stop	Breaker trip	Lamp
Low oil pressure	0	—	0
High water temperature	0	—	0
Overspeed	0	—	0
Battery voltage failure	-	_	0
Non charge	-	_	0
Low fuel level	0	_	0
Oil guard *1	-	_	0
Diagnosis (ECU error) *2	0	_	0
Overcurrent	-	0	_
Earth leakage	-	0	0

*1: Large tank models only (NES25TKL, NES45TYL, NES60TKL). *2: ECU models only (NES45 to NES400TI).

Certification

The specifications, registration and certification of government agencies and other organizations in Japan show the trust placed in NISSHA generators.

Construction equipment conforming to the Third Emission Regulation designated by MLIT (NES25TK – NES400TI)

Super low noise construction equipment designated by MLIT (NES25 – NES220)

111

Oil guard integrated generator registered with NETIS by MLIT (NES25TK – NES400TI)

Note : Third Emission Gas Policy models

Monitor

Machines equipped with the Second Exhaust Emission engines (NES100EI – NES500EM)

Low noise construction equipment designated by MLIT (NES400 – NES800)

Portable generator certified by the Nippon Engine Generator Association (all models)

SPECIFICATIONS

Specifications

		Ite	m		NES	25TK	NES2	STKL	NES4	5TY2	NES4	5TYL	NES	60TK	
		Freque	ncy	Hz	50	60	50	60	50	60	50	60	50	60	
		0.	itnut	kVA	20	25	20	25	37	45	37	45	50	60	
	ase pe		iiput	kW	16	20	16	20	29.6	36	29.6	36	40	48	
	e ty	2001/	Voltage	V	200	220	200	220	200	220	200	220	200	220	
	ree- wir	2000	Current	А	57.7	65.6	57.7	65.6	107	118	107	118	144	157	I
	Ң4-	1001	Voltage	V	400	440	400	440	400	440	400	440	400	440	1
		4000	Current	А	28.9	32.8	28.9	32.8	53.4	59.0	53.4	59.0	72.2	78.7	L
ttor	ase De		Output*1	kVA	11.5[5.8] ^{*7}	14.4[7.2] ^{*7}	11.5[5.8] ^{*7}	14.4[7.2] ^{*7}	21.4	26.0	21.4	26.0	28.9	34.6	1
erne	-pha	100/2001	Output	kW	11.5[5.8] ^{*7}	14.4[7.2] ^{*7}	11.5[5.8] ^{*7}	14.4[7.2] ^{*7}	21.4	26.0	21.4	26.0	28.9	34.6	1
Alt	ngle. Wir		Voltage*1	V	100/200	110/220	100/200	110/220	100/200	110/220	100/200	110/220	100/200	110/220	
	Sir 3-		Current*1	А	57.7[28.9] ^{*7}	65.6[32.8] ^{*7}	57.7[28.9] ^{*7}	65.6[32.8] ^{*7}	107	118	107	118	144	157	1
	wire tput		Autout*5	kVA	6.0	6.6	6.0	6.6	12.0	13.2	12.0	13.2	15.0	16.6	<u> </u>
	e 2-/ y ou		Output 5	kW	6.0	6.6	6.0	6.6	12.0	13.2	12.0	13.2	15.0	16.6	1
	ohaso xiliar	100V	Voltage	V	100	110	100	110	100	110	100	110	100	110	1
	gle-p e, au	Dedicated terminal	Dedicated terminal			_	-	_	60A×2	circuits	60A×2	circuits	75A×2	2 circuits	
	Sin		Outlet		15A	$\times 4$	15A	$\times 4$	15A	×2	15A	×2	15A	×2	1
	Туре	& Pow	er Factor			Brushl	ess Alterna	ator, 3-Pha	se, 4-Wire	, 4-Poles,	Power Fac	tor 80% L	agging		
	E	ngine n	nodel		KUBOTA V	2403-K3A	KUBOTA V	2403-K3A	YANMAR 3-	4TNV98TG	YANMAR 3-	-4TNV98TG	KUBOTA V38	00-DI-TI-K3A	
		Type Swirl chamber type			Direct inj	ection type	e with turb	ocharger	Direct injection type with t	urbocharger and intercooler					
	Cylinde	ers - Bor	m e imes Stroke	mm	4-87>	< 102.4	4-87>	< 102.4	4-98	×110	4-98	×110	4-100	×120	
	D	isplace	ment	ł	2.4	34	2.434 3.		3.3	19	3.3	819	3.769		
	R	lated or	utput	kW	19.1	23.7	19.1	23.7	37.9	45.6	37.9	45.6	49.2	57.5	
		Revolu	tion	min ⁻¹	1500	1800	1500	1800	1500	1800	1500	1800	1500	1800	
gine	Fu	iel 🗄	50% load	0/н	3.1	3.8	3.1	3.8	4.2	5.3	4.2	5.3	5.8	7.2	
띮	consu	mption	75% load	0/11	4.0	5.1	4.0	5.1	5.9	7.4	5.9	7.4	8.4	10.3	
	Eng	ine oil	volume	ł	9.	.7	9	.7	11	.2	11	.2	13	3.8	
		Batte	ry		85D26	6L×1	85D2	6L×1	105D3	1L×1	105D3	1L×1	105D3	31×1	
	Fue	l tank c	apacity	ł	7	0	19	95	14	15	33	30	18	30	
		Fuel							Diese	l fuel					
	Oil (Tot	guard c tal/Effe	apacity ctive*6	ł	70/	/70	300)/95	245	/80	460/	/135	275	6/75	
sight		Lengt	ז*2	mm	15	40	15	40	17	40	20	00	20	50	
nd W6		Widt	h	mm	70	00	70	00	88	30	88	30	93	30	
ns ar		Heigl	nt	mm	11	25	14	60	13	50	15	85	13	90	
ensio		Dry we	ight	kg	64	45	73	35	10	20	1125		1150		
Dim	Ope	erating	weight	kg	72	20	9	15	11	70	14	40	13	25	
S	Sound	power	level*3	dB	90 [S	uper】	88 [S	uper 】	90 [S	uper】	88 (S	uper】	89 [S	uper 】	
Sou	und lev	vel at 7	meters*4	dB	61	64	61	61	61	63	57	60	59	62	

*1: Colored characters denote options.
*2: Values in parentheses are dimensions excluding the rain cover.
*3: Value at 60Hz with zero load. [Super] denotes super low noise design machines, (Low) denotes low noise design machines.

▲NES125TI

NES6	OTKL	NES1	100TI	NES125TI NES150TI		NES220TI		NES400TI			
50	60	50	60	50	60	50	60	50	60	50	60
50	60	80	100	100	125	125	150	200	220	350	400
40	48	64	80	80	100	100	120	160	176	280	320
200	220	200	220	200	220	200	220	200	220	200	220
144	157	231	262	289	328	361	394	577	577	1010	1050
400	440	400	440	400	440	400	440	400	440	400	440
72.2	78.7	115	131	144	164	180	197	289	289	505	525
28.9	34.6	46.2	57.7	57.7	72.2	—	_	—	—	—	—
28.9	34.6	46.2	57.7	57.7	72.2	—	_	—	—	—	—
100/200	110/220	100/200	110/220	100/200	110/220	_	_	_	_	_	_
144	157	231	262	289	328	_	_		_	_	_
15.0	16.6	20.0	22.0	20.0	22.0	20.0	22.0	3.0	3.3	3.0	3.3
15.0	16.6	20.0	22.0	20.0	22.0	20.0	22.0	3.0	3.3	3.0	3.3
100	110	100	110	100	110	100	110	100	110	100	110
75A×2	2 circuits	100A × 2	2 circuits	100A × 2	2 circuits	100A × 2 circuits		_		-	_
15A	×2	15A	×2	15A	×2	15A	×2	15A	×2	15A	×2
		Bru	shless Alter	nator, 3-Ph	ase, 4-Wire	, 4-Poles, P	ower Facto	r 80% Lago	ging		
KUBOTA V38	00-DI-TI-K3A	ISUZU B	I-4HK1X	ISUZU B	I-4HK1X	ISUZU BI	H-6HK1X	ISUZU BI	H-6UZ1X	ISUZU Bł	I-6WG1X
			Direc	ct injection ⁻	type with tu	urbocharger	and interco	ooler			
4-100	×120	4-115	× 125	4-115	× 125	6-115	× 125	6-120	×145	6-147	×154
3.7	769	5.1	93	5.193		7.7	'90	9.839		15.0	681
 49.2	57.5	95.8	113.6	95.8	113.6	135.2	166.5	185.2	203.7	309	346
1500	1800	1500	1800	1500	1800	1500	1800	1500	1800	1500	1800
5.8	7.2	9.6	12.5	11.8	15.2	14.1	18.0	22.1	25.8	39.6	50.6
8.4	10.3	13.9	17.4	17.0	21.4	19.9	24.5	32.4	36.5	55.9	67.6
13	3.8	23	3.5	23	3.5	4	1	4	2	5	2
105D3	81L×1	170F5	51×1	170F5	51×1	120E4	1R×2	195G	51×2	195G	51×2
40	00	25	50	25	50	25	50	39	90	49	90
					Diese	el fuel					
400,	/140	255/	/205	255/	/205	390/	/280	435/	/265	605/	/410
2050 2900		29	00	34	80	38	35	4780	(4490)		
930 1180		11	80	11	80	12	90	15	00		
1600 1550		15	50	16	50	1790		2200			
12	10	20	00	20	50	27	20	3650		55	20
1570		22	50	23	00	29	90	4050		6050	
88 [S	uper 】	93 [S	uper 】	93 [S	uper 】	92 [S	uper 】	94【S	uper 】	97 (Low)
58	61	61	64	60	64	60	65	64	67	66	69

*4: Average sound pressure in 4 directions at no load.*5: Total output value for dedicated terminals and power outputs.

*6: Total capacity means the capacity of the oil guard itself. Effective capacity means the capacity considering the fuel tank and other components.
*7: Values in [] are for three-phase 400V wire connections.

SPECIFICATIONS

Specifications

NES100EI

NES125EH

NES220EM

Item			NES100EI		NES125EH		NES150EH		NES220EM				
		Freque	ncy	Hz	50	60	50	60	50	60	50	60	
		0		kVA	80	100	100	125	125	150	195	220	
	se Je	Uu	liput	kW	64	80	80	100	100	120	156	176	
	e typ	2001/	Voltage	V	200	220	200	220	200	220	200	220	
	ree- wire	2000	Current	Α	231	262	289	328	361	394	563	577	
	년 수	4001/	Voltage*1	V	400	440	400	440	400	440	400	440	
		4001	Current*1	Α	115	131	144	164	180	197	281	289	
Itor	ise De		Output*1	kVA	46.2	57.7	57.7	72.2	—	—	—	—	
erna	-pha	100/2001	Output 1	kW	46.2	57.7	57.7	72.2	—	—	—	—	
Alte		100/2008	Voltage*1	V	100/200	110/220	100/200	110/220	—	—	—	—	
	Sir 3		Current*1	А	231	262	289	328	—	—	—	_	
	vire tput		Output*5	kVA	20.0	22.0	20.0	22.0	20.0	22.0	3.0	3.3	
	e 2-v y out		Output 5	kW	20.0	22.0	20.0	22.0	20.0	22.0	3.0	3.3	
	ohas(xiliar	100V	Voltage	V	100	110	100	110	100	110	100	110	
	igle-j e, au		Dedicated terminal		100A×	2 circuits	100A × 2	100A × 2 circuits		2 circuits		-	
	typ typ		Outlet		15A	×2	15A	15A×2		×2	15A×2		
	Туре	& Powe	er Factor			Brushless A	Iternator, 3-P	hase, 4-Wire	, 4-Poles, Po	wer Factor 80	0% Lagging		
	E	ngine m	nodel		ISUZU D	ISUZU DD-6BG1T		08C-UD	HINO JO	08C-UD	MITSUBISHI	6D24-TLE2B	
		Туре	;		Direct injection typ	e with turbocharger	D	irect injection	n type with tu	irbocharger a	and intercoole	er	
	Cylinde	ers - Bore	m e imes Stroke	mm	6-105×125		6-114	× 130	6-114	×130	6-130	×150	
	D	isplace	ment	l	6.4	94	7.961		7.961		11.94		
	R	ated ou	itput	kW	73.6	91.2	118	140	118	140	181	199	
gine		Revolut	ion	min⁻¹	1500	1800	1500	1800	1500	1800	1500	1800	
Ē	Fu	iel 5	50% load	₽/н	9.8	12.6	11.8	14.7	14.1	17.6	22.1	26.5	
	consui	nption 7	75% load		13.6	17.6	16.7	20.0	20.0	24.0	30.9	36.6	
	Eng	ine oil v	/olume	l	2	0	24	.5	24	.5	3	7	
		Batter	ry		95D3 ⁻	1R×2	95D31	IR×2	95D31	IR×2	150F5	51×2	
	Fue	tank c	apacity	l	20	00	25	50	25	50	37	70	
		Fuel						Diese	l fuel				
eight		Length	1*2	mm	27	30	31	80	31	80	38	40	
m bri		Width	*1	mm	10	50	11:	30	11:	30	1290 ((1820)	
ons a		Heigh	nt	mm	12	90	14	50	14	50	17	50	
nensi		Dry wei	ght	kg	16	50	21	70	2270		3530		
Dir	Ope	erating	weight	kg	18	50	24	20	25	20	39	10	
S	Sound	power	level*3	dB	93 [S	uper]	94【S	uper)	95 [S	uper]	95 (Super)		
Sol	und lev	/el at 7	meters*4	dB	6	5	6	6	6	7	6	7	

*1: Colored characters denote options.
*2: Values in parentheses are dimensions excluding the rain cover.
*3: Value at 60Hz with zero load. [Super] denotes super low noise design machines, (Low) denotes low noise design machines.

▲NES400EM

....

▲NES500EM

▲NES800SM

NES400EM		NES500EM		NES610SM		NES800SM	
50	60	50	60	50	60	50	60
350	400	450	500	554	610	700	800
280	320	360	400	443	488	560	640
200	220	200	220	200	220	200	220
1010	1050	1299	1312	1599	1600	2021	2100
400	440	400	440	400	440	400	440
505	525	650	656	800	800	1010	1050
—	_	—	_	—	_	_	_
—	_	—	_	—	—	_	_
—	_	—	_	—	_	_	_
—	—	—	—	—	_	_	_
3.0	3.3	3.0	3.3	3.0	3.3	3.0	3.3
3.0	3.3	3.0	3.3	3.0	3.3	3.0	3.3
100	110	100	110	100	110	100	110
				-	-	_	-
15A	×2	15A	×2	15A	×2	15A	×2
Brushless Alternator, 3-Phase, 4-Wire, 4-Poles, Power Factor 80% Lagging							
MITSUBISHI S6B3-E2PTAA-3		MITSUBISHI Se	SA3-E2PTAA-1	MITSUBISH	II S6R-PTA	MITSUBISHI	S12A2-PTA
Direct injection type with turbocharger and intercooler							
6-135	×170	6-150×175		6-170	× 180	12-150)×160
14	.6	18.56		24.5		33.9	
309	346	405	467	517	565	677	758
1500	1800	1500	1800	1500	1800	1500	1800
38.5	47.5	49.9	61.0	60.2	72.9	82.2	105
55.1	67.4	71.8	86.1	84.0	99.2	113	141
 5	0	8	0	9	2	130 (+Sub	o Tank 85)
 195G	51×2	195G	51×2	195G	51×2	195G5	51×4
49	90	49	90	58	30	73	80
			Diese	l fuel			
45	50	5270 (4790)	5173 (4690)	6235 (5600)
1415 (2375)	16	50	16	50	19	50
 20	90	22	80	24	00	25	80
55	10	68	10	81	90	110	00
60	30	74	00	88	60	12000	
101 (Low)	98 (I	_ow)	101 ((Low)	101 (Low)
7	1	6	8	72		73	

*4: Average sound pressure in 4 directions at no load (60Hz).*5: Total output value for dedicated terminals and power outputs.

NAC-300 (Full-auto parallel running device)

The NAC-300 is an auto-parallel running device for NES series generators. This controller includes auto start/stop, synchronizing, load sharing, controlling the number of operating units, and measurement and protection, allowing fully automatic parallel running of generators.

The number of operating generators are automatically controlled so that the optimum number are in operation according to changes in the power load, therefore only the minimum necessary number of generators are in operation and the remaining generators are stopped and placed in a standby state, thus improving the operating efficiency of the generators and saving fuel.

Features

- Compact unit that enables all-in-one control
- Full automatic control with a single switch
- Efficient operation for lower fuel consumption
- Up to 8 generators can be connected
- Remote auto start-stop of one or more generators via contact input (can be applied as standard emergency generator for power failures)

Functions

Auto start/stop

- 2 Auto synchronizing, load sharing
- Ontrol for constant frequency and voltage
- Outo control of the number of operating units Parallel running and disconnection are automatically controlled to run the optimum number of units according to changes in load power. (Generators are controlled by communications cables. Standard length of cables is 10m, with optional 99m cables available.)

Ontrol for heavy loads

The number of operating units can be increased in advance with a forced operation command, allowing heavy load equipment such as vibratory pile drivers, earth augers and tunnel excavators to be connected.

Front panel of NAC-300

O Remote control of auto start/stop Each generator can be controlled remotely. Various control methods are available.

Provided with reverse power protection and measurement display

Installation examples

Percent power meter

The shared power of each generator in parallel running is displayed in percentages so that the power balance can be checked at a glance. Reverse power protection is also provided, and can be used with manual parallel running devices.

Notes on parallel running

Although parallel running involves procedures such as load sharing, as well as monitoring the operation state, it offers a number of benefits:

- Allows large power supply.
- The number of operating units can be easily set according to the load demand.
- Even if one generator fails, operation can be continued with other units.

Furthermore, an advanced power generation system can be built by controlling the number of operating units and using the remote start/stop.

	Start/stop	Synchronizing	Load sharing	No. of operating units	Remote control	
NAC-300	Auto	Auto	Auto	Auto	Option	
Manual synchronizing	Manual	Manual	Manual	Manual	Option	
Note: This table shows the basic functions of parallel running.						

Three-phase/single-phase selector cam switch

Three-phase 200V and single-phase with three wires can be switched by one-touch operation with this voltage switching device.

Single-phase three-wire dedicated specification

The generator can be used for large capacity singlephase output (normal three-phase four-wire terminals are modified).

200V auxiliary output

Even if the main output is set to 400V, a separate terminal board can provide three-phase 200V output. This is useful when supplying power to 200V load equipment such as lighting fixtures and welders while using 400V load equipment such as heavy-duty electric augers.

Relevant models	Rated current of 200V dedicated output terminal
NES220	125A
NES400 – 610	225A
NES800	250A

OPTION

e-Pon (Basic auto starter)

Start/stop and run/idle control of a generator can be controlled using external signals, enabling many useful applications.

Example … 1

If a generator is used as a power supply for a temporary office at a work site where commercial power is unavailable, and the main circuit breaker on the distribution board in the office is equipped with an auxiliary contact, the generator can be started and stopped by turning the main circuit breaker on and off.

Example ··· 2

If two or more generators are used as a power supply for an event and one of them fails, a back-up generator automatically starts up to supply power.

Example ··· 🚯

A system that automatically controls the start/stop or run/idle of a generator according to the water level can be built by combining a generator, submersible pump and float switch. (The float switch is optional equipment; the water pump is out of our scope of supply.)

With the conventional powering of a submersible pump from a generator, the generator keeps running at almost no-load rated speed when the water level is lower, consuming fuel. If the e-Pon is incorporated in the generator, fuel consumption can be reduced.

Example ··· 4

A remote control (wired) can be used to link the run/stop contact points of the remote control to the running/stopping (or idling) of the generator, and an improvement in fuel consumption can be expected (remote control is purchased separately). Generator equipped

Advantage

- Allows energy-saving operation of a submersible pump.
- Reduced fuel consumption means reduced CO₂ emissions.
- Reduced fuel consumption adds value to the system.
- Prevents dry operation of the submersible pump, extending pump life.
- Reduces low-load operation of the generator, leading to shorter operation hours.

Example on-site

- Intended purpose: reservoir drainage
- Load: submerged pump
- Method: automatic operation by water level detection (run - stop)

Full view of reservoir

with e-

Float switch(optional)

Water

lowers

Float switch

*2: If the oil guard stop switch is on.

Energy-saving remote controller and slowdown device

Slowdown device

The energy-saving remote controller and slowdown device remotely control engine operation for better fuel economy. Both are wired remote controllers.

		\bigcirc : Available
Remote control	Energy-saving remote controller	Slowdown device
Idling/rated speed	0	0
Start/stop	_	0
Cable length	10m	30m

Auto start/stop unit

This unit automatically starts/stops a generator according to the commercial power state. The generator starts automatically when commercial power fails, and stops automatically after cooling down when commercial power is restored. The unit is provided with an auto/manual switch to select auto or manual operation in the event of a power failure, as well as a test switch to check if the generator starts automatically.

Battery charger

This unit charges the battery used for starting the generator engine. The battery slowly discharges to supply stand-by power even when the generator is not operating. The battery charger is indispensable, preventing the battery from running down for an emergency generator that is equipped with an auto starting start/stop unit and maintaining a stand-by state at all times in case of emergencies. The charger uses commercial power to charge the battery while the generator is in a stand-by state.

Madal	Auto start/stop ι	unit and charger	Battery charger		
INIOUEI	Built in NES unit	Separate board	Built in NES unit	Separate board	
NES25TK	_	0	_	0	
NES25TKL, NES45 to 100, NES125TI	_	0	0	0	
NES125EH, NES150 to 800	0	0	0	0	

Auto idling device

This device automatically idles the engine when the engine starts, extending engine life and reducing unnecessary fuel consumption.

Automatic oil supply unit

This unit consists of an oil sub-tank, solenoid valve, oil level regulator. It automatically supplies engine oil as it is consumed during operation. Long time operation of the generator becomes possible since the oil in the oil pan is maintained at the correct level.

Energy-saving remote controller

Muffler flange

Flange structure (conforming to JIS 5k) is used for the muffler outlet of the exhaust piping.

NES model	25	45, 60	100 to 150	220	400	500	610, 800
Size	50A	65A	100A	150A	175A	200A	250A

Anti-theft cover

Special cover with lock is provided on the hoist hook to prevent generator theft.

Trailer

Single-axle/2-wheel and 2-axle/4-wheel trailers with leaf springs are available for easy movement of the generator on site (maximum speed: 25 km/h).

Skid

Used when lifting generators with forklifts or when generators need to be raised.

Relevant models	Dimension of sleepers (height only)/number per generator
NES25 – 60, 100El	85mm/2
NES100TI/125TI	105mm/3
NES125EH/150EH	85mm/4
NES150TI/220 - 500	105mm/4
NES610/800	105mm/5

Single-axle/2-wheel trailer

2-axle/4-wheel trailer

Salt resistance

Assuming use at offshore work sites, the NES series generators are provided with salt damage prevention measures such as enhanced alternator insulation, corrosion resistant paint and stainless steel hinges. Specifications for enhanced protection against salt damage as well as economy specifications for simplified protection are also available as options.

Content of implementation	Simple salt damage	Salt damage prevention
Anti-corrosion paint	Standard	Standard
Electrical component/ terminal reinforcement	0	0
Generator insulation reinforcement	_	0
Output terminal rubber backing sheet	_	○ *1
Rain cover	—	○ *2

*1 Standard for NES500 - 800

*2 NES220EM and 400EM only (standard for NES400TI and 500 - 800)

Output terminal cover

Rain cover

A detachable cover is attached for preventing rain water from entering the bonnet intake.

(When attaching to NES220EM and 400EM, total width increases.)

Makes main circuit wiring work easier when installing power generating devices. (Total length and width varies with each model. Consult Nippon Sharyo for details.)

AMF system

Although the NES series portable generators are basically designed to provide power supply at work sites, options are available for use as AMF generators that automatically supply power in the event of a power failure. These options include the auto start/stop unit, battery charger and power switching panel, and an AMF generator can be configured using simple optional equipment.

Example of installation (NES60 class)

This example shows a system combining an auto start/stop unit, battery charger and power switching panel into one unit.

Power switching panel

This panel incorporates a switch to toggle between commercial power and generator output. The design is similar to a distribution board. Various models are available to meet your requirements for voltage, current and indoor/ outdoor use.

	Standa	ard size of p	ower switching panel	(Indoor type)	
Model	Voltage	Current	Dimensions $(W \times H \times D)$	Method	
TPR-220		200A	700~1000~200	Wall-	
TPR-240		400A	700×1000×300	mounted	
TPR-260	200V	600A	800×1650×500		
TPR-280	system	800A	800×1850×500	Free-	
TPR-2100		1000A	800210502500	standing	
TPR-2120		1200A	000×1950×500		
TPR-420		200A	700×1000×200	Wall-	
TPR-440		400A	700×1000×300	mounted	
TPR-460	400V	600A	800×1650×500		
TPR-480	system	800A	800×1850×500	Free-	
TPR-4100		1000A	800210502500	standing	
TPR-4120		1200A	000×1950×500		

Note: • Please consult with Nippon Sharyo for special requirements such as incorporating an auto start/stop unit in the power switching panel. • Please consult Nippon Sharyo about outdoor specifications.

OPTION

Options

	Item	Page	25TK	25TKL	45TY2	45TYL	60TK	60TKL	100TI	
unning	NAC-300 (Full-auto parallel running device)	9,10	_	_	_	_	_	_	_	
llel ri	Manual synchronizing device	10	_	_	_	_	_	_	_	
Para	Percent power meter	10	_	—	_	-	_	_	_	
	3-phase/single-phase 3-wire simultaneous output	2	•	•	_	—	_	—	_	
	Dual voltages	2		•						
Output	3-phase/single-phase selector cam switch	10	_	_	\bigcirc	\bigcirc	\bigcirc	0	_	
	Single-phase 3-wire dedicated specification	10	_	_	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
	200V auxiliary output	10	_	—	—	—	_	—	—	
	e-Pon (Basic auto starter)	11	_	0	—	0	_	0	0	
trol	e-Stop (Auto shutdown)	11	0	0	0	\bigcirc	\bigcirc	0	\bigcirc	
con	Energy-saving remote controller	12	—	—	—	—	—	—	\bigcirc	
ation	Slowdown device	12	_	—	—	—	—	—	—	
pera	Auto idling device	12	—	—	—	—	-	—	-	
0	Auto start/stop unit and charger	12	○*1	○*1	○ *1	○ *1	○ *1	○ *1	○*1	
	Battery charger	12	○ *1	0	0	0	\bigcirc	0	\bigcirc	
	Power switching panel *1	14	\bigcirc	0	0	0	\bigcirc	0	\bigcirc	
	Oil guard	3		•		•				
e	Fuel tank three-way cock	4		—		_		-		
)il/fu	Automatic oil supply unit	12	_	—	-	—	-	-	-	
U	Oil drain pump	—	—	—	_	_	—	_	—	
	Fuel supply device	—	—	—	—	—	—	—	—	
	Muffler flange	13	○ *2	○ *2	○ *2	○ *2	○ *2	○ *2	0	
	Leak detection set at 200mA	3	0	0	0	0	0	0	0	
	Salt resistance	13	0	0	0	0	0	0	0	
	Rain cover	5 to 8,13	_	_	-	_	_	-	-	
	Anti-theft cover *2	13	0	0	0	0	0	0	0	
ers	Skid *2	13	0	0	0	0	0	0	0	
oth	Panel door with key *2	—	0	0	0	0	0	0	0	
	Fuel filler with key *2	—	•	0	0	0	0	0	0	
	Output terminal rubber backing sheet *2	—	•	•	0	0	0	0	0	
	Specified color	—	0	0	0	0	0	0	0	
	Trailer	13	\bigcirc	—	0	—	0	—	0	
	Output terminal cover	13	\bigcirc	0	0	0	0	0	0	

*1: Attached externally via a separate panel *2: Component options can also be covered.

									•::	Standard	\bigcirc : Option
125TI	150TI	220TI	400TI	100EI	125EH	150EH	220EM	400EM	500EM	610SM	800SM
_	_	0	\bigcirc	_	—	_	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0
_	\bigcirc	0	•		\bigcirc	0	\bigcirc	•		•	•
—	_	\bigcirc	\bigcirc	—	—	—	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
—	_	_	_	_	_	_	_	_	_	_	_
•		•	•	\bigcirc	•	•	•	•		•	•
_	_	_	_	_	_	_	_	_	_	_	_
\bigcirc	_	_	_	0	\bigcirc	_	_	_	_	_	_
_	_	0	0	_	_	_	0	0	0	0	0
\bigcirc	\bigcirc	\bigcirc	\bigcirc				-	-	_	-	
0	0	U	0		_		_		_	_	_
\bigcirc	\bigcirc	\bigcirc	\bigcirc	—	—	—	—	—	—	-	-
0	\bigcirc	0	\bigcirc		\bigcirc	0	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc
—	—	0	\bigcirc	—	—	—	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0
—	—	—	\bigcirc	—	—	—	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
○ *1	\bigcirc	\bigcirc	\bigcirc	○*1	\bigcirc						
0	\bigcirc	0	\bigcirc	0	\bigcirc	0	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc
\bigcirc	\bigcirc	0	\bigcirc	0	\bigcirc	0	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc
				—	—	—	-	—	—	-	-
			\bigcirc					\bigcirc	\bigcirc	\bigcirc	\bigcirc
—	—	0	\bigcirc	—	—	—	\bigcirc	0	\bigcirc	\bigcirc	
—	—	\bigcirc	\bigcirc	—	—	—	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
-	—	\bigcirc	\bigcirc	—	—	—	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
0	\bigcirc	\bigcirc	\bigcirc	○ *2	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	0
0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc
0	\bigcirc	0	\bigcirc	\bigcirc	0	0	\bigcirc	0	\bigcirc	\bigcirc	0
—	—	—		—	—	—	\bigcirc	\bigcirc			
0	\bigcirc	\bigcirc	—		\bigcirc	\bigcirc	\bigcirc	—	—	-	—
0	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	0	\bigcirc	0	\bigcirc	0	0
0	\bigcirc	0	\bigcirc	0	\bigcirc	0	\bigcirc	0	0	\bigcirc	0
0	\bigcirc	0	\bigcirc								
0	0	0	0	0	0	0	0	0	•	•	•
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0

Note : Please consult with Nippon Sharyo if you have a specific requirement for options or specifications other than the above. Some combinations of options are not available. Please consult with Nippon Sharyo for more information.

Selecting generator capacity

The following data shows a guideline for selecting generator when load of 3-phase, squirrel-cage induction motor (hereinafter referred to as a motor) is used.

The requirements may vary depending on the motor specifications and operating conditions. Please consult with Nippon Sharyo for more information.

• Conditions for calculating the required generator capacity

Motor efficiency is assumed to be 85%, starting kVA is assumed to be 7 kVA/kW and momentary voltage drop at motor startup is assumed to be 30%. The load applied to the engine may vary depending on the brake mean effective pressure of the engine.

Table 1 Required capacity for operation

Motor capacity (kW)	1.5	2.2	3.7	5.5	7.5	11	19	22	37	45	60
Generator capacity (kVA)	2.2	3.2	5.4	8.1	11.0	16.2	27.9	32.4	54.4	66.2	88.2

Table 2 Required capacity for starting

Motor capacity	(kW)	1.5	2.2	3.7	5.5	7.5	11	19	22	37	45	60
Generator	Line starting	4.9	7.2	12.1	18.0	24.5	35.9	62.1	71.9	121	147	196
capacity (kVA)	Y - Δ	3.3	4.8	8.1	12.0	16.3	24.0	41.4	47.9	80.6	98.0	131

(1) Starting one motor or multiple motors simultaneously

Referring to Tables 1 and 2 above, find the generator capacity (kVA) corresponding to the motor capacity (kW) and select the higher value generator capacity.

Example: Starting 3.7 kW and 5.5 kW line-starting motors simultaneously

Motor capacit	y (kW)	3.7	5.5	3.7 + 5.5
Generator	Table 1	5.4	8.1	5.1+8.1=13.5
capacity (kVA)	Table 2	12.1	18.0	12.1+18.0=30.1

The required generator capacity is 30.1 kVA.

• Output reduction due to ambient temperature

Output decreases by 11% when the ambient temperature increases by 5°C, with JISB8002 standard conditions (atmospheric pressure of 100kPa, ambient temperature of 25°C, and humidity of 30%) as a baseline.

Cable selection guide

Voltage drop of the cable should be within 10V.
 Amperes per square millimeter should be approximately 3 amps.

				•==• (•••••)
Motor capacity (kW)	Full-load current (A)	Within 20m	Within 100m	Within 200m
1.5	7.3	3.5	3.5	5.5
2.2	10	3.5	5.5	8
3.7	16	5.5	5.5	14
5.5	24	8	14	22
7.5	31	14	14	22
11	45	22	22	38
19	74	30	30	60
22	87	38	38	80
37	143	50	60	100
45	175	60	80	150
60	220	80	100	200

Note : If a magnetic contactor is used to start a motor and the contactor chatters when starting, use a larger cable size.

(2) Starting multiple motors sequentially

Find the generator capacity required for the steady-state operation of the motors already started (Table 1), and find the generator capacity required for starting the motor to be started last (Table 2). The sum of these values is the generator capacity required for sequential starting.

Example: Starting 7.5 kW, 11 kW and 19 kW (Y-∆) motors sequentially

Motor capacit	y (kW)	7.5	11	19	7.5+11+19
Generator	Table 1	11.0	16.2		11.0+16.2+41.4
capacity (kVA)	Table 2			41.4	=68.6

The required generator capacity is 68.6 kVA.

Example

Ambient Temperature	Output	% Decrease
25°C	100%	—
35°C	78%	22%

Cable size (mm²)

When inquiring about Nippon Sharyo diesel generator sets, we would appreciate your filling in the Specification Requirements below and returning it to us. This will enable us to provide a quicker and more accurate quotation for your requirements.

1. End user's name		
2. Model		
NES		
3. Quantity		
	Unit(s)	
4. Application		
Prime power	Stand-by powe	er
5. Output		
kVA or	kW	
6. Operating system		
□ Single operation	Parallel runnin	g Units
7. Necessary optional equipment	t	
8. Service conditions		
Altitude: Temperature range	meters to	°C
9. Maximum humidity		

Distributor

Manufacturer

URL http://www.n-sharyo.co.jp/

80, Ryucho, Narumi-cho, Midori-ku, Nagoya, 458-8502, Japan Tel: +81-52-623-3529 Fax: +81-52-623-4349 Due to company policy of continuous development and improvement, NIPPON SHARYO reserves the right to change designs and specifications without notice. CAT.No.142B (2014-1)